Approximate Bayesian computing for spatial extremes

نویسندگان

  • Robert J. Erhardt
  • Richard L. Smith
چکیده

ROBERT J. ERHARDT: Approximate Bayesian Computing for Spatial Extremes. (Under the direction of Richard L. Smith.) Statistical analysis of max-stable processes used to model spatial extremes has been limited by the difficulty in calculating the joint likelihood function. This precludes all standard likelihood-based approaches, including Bayesian approaches. Here we present a Bayesian approach through the use of approximate Bayesian computing. This circumvents the need for a joint likelihood function and instead relies on simulations from the (unavailable) likelihood. This method is compared with an alternative approach based on the composite likelihood. When estimating the spatial dependence of extremes, we demonstrate that approximate Bayesian computing can provide estimates with a lower mean square error than the composite likelihood approach, though at an appreciably higher computational cost. As this approach very naturally incorporates parameter uncertainty into predictions, it is well suited for use in pricing weather derivatives to manage environmental risks. We discuss the construction and pricing of such weather derivatives. The method described utilizes results from spatial statistics and extreme value theory to first model extremes in the weather as a max-stable process, and then use these models to simulate payments for a general collection of weather derivatives. These simulations capture the spatial dependence of payments. Incorporating results from catastrophe ratemaking, we show how this method can be used to compute risk loads and premiums for weather derivatives which are renewaladditive. We illustrate the performance of the approximate Bayesian computing method and weather derivative pricing with applications to United States temperature data. The first application considers pricing weather derivatives for temperature extremes in the Midwestern United States. The second application demonstrates the use of the approximate Bayesian computing method in estimating the risk of crop loss due to an unlikely freeze event in northern Texas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

Likelihood-free simulation-based optimal design with an application to spatial extremes

In this paper we employ a novel method to find the optimal design for problems where the likelihood is not available analytically, but simulation from the likelihood is feasible. To approximate the expected utility we make use of approximate Bayesian computation methods. We detail the approach for a model on spatial extremes, where the goal is to find the optimal design for efficiently estimati...

متن کامل

Bayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss

This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.

متن کامل

Efficient Bayesian Hierarchical Modeling of Spatial Precipitation Extremes

An efficient Bayesian hierarchical model for spatial extremes on a large domain is proposed. In the data layer a Gaussian elliptical copula having generalized extreme value (GEV) marginals is applied. Spatial dependence in the GEV parameters are captured with a latent spatial regression. Using a composite likelihood approach and a method for incorporating stations with missing data, we are able...

متن کامل

Functional Brain Response to Emotional Muical Stimuli in Depression, Using INLA Approach for Approximate Bayesian Inference

Introduction: One of the vital skills which has an impact on emotional health and well-being is the regulation of emotions. In recent years, the neural basis of this process has been considered widely. One of the powerful tools for eliciting and regulating emotion is music. The Anterior Cingulate Cortex (ACC) is part of the emotional neural circuitry involved in Major Depressive Disorder (MDD)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012